Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity.
نویسندگان
چکیده
Local fluctuations in the blood oxygenation level-dependent (BOLD) signal serve as the basis of functional magnetic resonance imaging (fMRI). Understanding the correlation between distinct aspects of neural activity and the BOLD response is fundamental to the interpretation of this widely used mapping signal. Analysis of this question requires the ability to precisely manipulate the activity of defined neurons. To achieve such control, we combined optogenetic drive of neocortical neurons with high-resolution (9.4 T) rodent fMRI and detailed analysis of neurophysiological data. Light-driven activation of pyramidal neurons resulted in a positive BOLD response at the stimulated site. To help differentiate the neurophysiological correlate(s) of the BOLD response, we employed light trains of the same average frequency, but with periodic and Poisson distributed pulse times. These different types of pulse trains generated dissociable patterns of single-unit, multi-unit and local field potential (LFP) activity, and of BOLD signals. The BOLD activity exhibited the strongest correlation to spiking activity with increasing rates of stimulation, and, to a first approximation, was linear with pulse delivery rate, while LFP activity showed a weaker correlation. These data provide an example of a strong correlation between spike rate and the BOLD response. This article is part of a Special Issue entitled Optogenetics (7th BRES).
منابع مشابه
Optogenetic drive of neocortical pyramidal neurons
Local fluctuations in the blood oxygenation level-dependent (BOLD) signal serve as the basis of functional magnetic resonance imaging (fMRI). Understanding the correlation between distinct aspects of neural activity and the BOLD response is fundamental to the interpretation of this widely used mapping signal. Analysis of this question requires the ability to precisely manipulate the activity of...
متن کاملComputational Modeling of Distinct Neocortical Oscillations Driven by Cell-Type Selective Optogenetic Drive: Separable Resonant Circuits Controlled by Low-Threshold Spiking and Fast-Spiking Interneurons
Selective optogenetic drive of fast-spiking (FS) interneurons (INs) leads to enhanced local field potential (LFP) power across the traditional "gamma" frequency band (20-80 Hz; Cardin et al., 2009). In contrast, drive to regular-spiking (RS) pyramidal cells enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing th...
متن کاملIn Vivo Optogenetic Stimulation of Neocortical Excitatory Neurons Drives Brain-State-Dependent Inhibition
BACKGROUND Synaptic interactions between excitatory and inhibitory neocortical neurons are important for mammalian sensory perception. Synaptic transmission between identified neurons within neocortical microcircuits has mainly been studied in brain slice preparations in vitro. Here, we investigate brain-state-dependent neocortical synaptic interactions in vivo by combining the specificity of o...
متن کاملAcetylcholine excites neocortical pyramidal neurons via nicotinic receptors.
The neuromodulator acetylcholine (ACh) shapes neocortical function during sensory perception, motor control, arousal, attention, learning, and memory. Here we investigate the mechanisms by which ACh affects neocortical pyramidal neurons in adult mice. Stimulation of cholinergic axons activated muscarinic and nicotinic ACh receptors on pyramidal neurons in all cortical layers and in multiple cor...
متن کاملTemporal Structure of Neuronal Activity among Cortical Neuron Subtypes during Slow Oscillations in Anesthetized Rats.
UNLABELLED Slow-wave oscillations, the predominant brain rhythm during sleep, are composed of Up/Down cycles. Depolarizing Up-states involve activity in layer 5 (L5) of the neocortex, but it is unknown how diverse subtypes of neurons within L5 participate in generating and maintaining Up-states. Here we compare the in vivo firing patterns of corticopontine (CPn) pyramidal cells, crossed-cortico...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 1511 شماره
صفحات -
تاریخ انتشار 2013